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? 1. INTRODUCTION AND SUMMARY

Discriminating between the seismograms obtained from natural
earthquakes and seismograms obtained from underground nuclear
explosions is a key procedure in monitoring present and future
compliance with treaties limiting the testing of underground nuclear
explosions. There is an enormous literature on this problem. A
complete discussion of various approaches to seismic discrimination,
up to approximately the middle 1970's is contained in the book by
Dahlman and Israelson (1977). This book discusses most of the
computational procedures which have been proposed whereby
seismograms can pe anaylyzed in order to infer whether they are
earthquake like or explosion 1like. There has been much progress
since this book was written, principally in the testing and

I O MRy ¥ 3 A Tt s

comparison of various discriminants. Most studies, however, have ;
peen of a piecemeal nature because it is only recently that large H
, digital data sets have been collected together, allowing rigorous
{v comparison of the efficacy of tne various discriminants.

s Perhaps tne most complete examination of methods of seismic
discrimination was of the Area of Interest (Al)} experiment sponsored
by tne VELA Seismological Center (VSC) and completed approximately a
year and a half ago. For this experiment, seismograms recorded at
approximately 30 stations around the world for about 120 events were
collected together and distributed to three participants to apply
seismic discrimination processing. The results of this test have

peen extensively reported (Rivers, et al., 1979a, 1979b, 1979c;

i Savino, et al., 1979, 1980a, 1980b; and Sax, et al., 1979a, 1979b).
A review of the findings of this experiment has been provided by
Rivers, et al. (198l). Rivers has presented numerous conclusions
and recommendations oDased upon nis review of the experiment. They

i basically fall into two categories. The first are problems
associated with the fabrication of the data base (for example, the
difference in magnitudes of the earthquakes versus the explosions),
and second, discrepencies in computational methodology between the
various participants (for examplie, differences in phases identified
for various measuremer 3).
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This report describes the results of a study focused on the
computational methodology  for seismic discrimination. In
particular, it describes the development of a set of computer
programs for performing automatic seismic discrimination. This
study nas resultea in the design and the implementation of a bare

; bones automatic discrimination computer program which makes
-@ ; automatic measurements on seismograms and then, based on prior
| analysis of training data, classifies the seismograms and assigns
;f4f probabilities to that classification. The design, operation and
performance of this automatic system are discussed in Chapter 2.
‘ Section 2.1 of Chapter 2 focuses upon questions of the data base,

"‘ tne measurement of seismogram features (discriminants), and, i
b finally, tne 1linear discriminant analysis of these features to

s perform classification. The rest of the chapter talks about more
advanced seismic phase characterization methods and discusses some
. of the qualitative aspects of regional and teleseismic

«f discrimination. We note here tne problems of formal incorporation
. of network measurements such as location and depth, which it is

: difficult to gquantify witnin tne available statistical framework.

.y
gic.
S ’

Chapter 3 discusses the statistical framework which is based

upon the Fisher Linear Discriminant. Theory shows that this is the

’ pest discriminant for some proolems (Gaussian errors and equal
covariance matrices). We have adopted it here, not so much on

theoretical grounds, but from the principal of parsimony. That is,

it is the simplest model which performs the classification. We also

+ nave adopted this model for another reason, which is based on our
belief that it is inevitapie in the study of this problem that one

will wish to partition the data (for example, within rather small

magnitude ranges or for specific source locations). Partitioning

’ inevitably will entail very small sample sizes; hence, inferences
‘ made upon them with complicated statistics will not, in general, be
very robust. Although most of the discussion in Chapter 3 has been

gleaned from standard texts in multivariate data analysis (Young and

’ Calvert, 1974; Gnanadesikan, 1977), we have added two new ideas in
applying these methoas to the discrimination between explosion and
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earthquake seismograms. The new statistical idea presented here is
the use of damping to suppress small eigenvalues after singular
value decomposition of the sample covariance matrices. This 1is
closely related to tne technique of ridge regression. The other new
(to most seismologists) trick whicn has been added, 1is the
application of  jackknifing (1eave-one-out) for estimating
misclassification probabilities. Misclassification probabilities
inevitably reflect the composition of the training data. We find
that misclassification probabilities based upon traditional
statistics (t-test for example) generally are more lax than the
probabilities inferred from jackknifing. We have not, 1in this
study, applied the z-transformation or any other data dependent
transformation in an attempt to normalize the measurements for we
believe that tne jackknife procedure provides more realistic
estimates in the real world.

A nice feature of the linear discriminant analysis is that it
reduces the multidimensional data space for each event recorded at
each station to a single scalar measure, in many cases making it
easy to spot outliers or anomalous seismograms. We also have not
formally discussed the analysis of variance or the importance
functions of the various discriminants. Chapter 3 concludes with
remarks on tne effects of measurement error, the problem of missing
measurements, and some speculations on more robust techniques for
astimating means and covariances of the training data.

The last chapter, Chapter 4, discusses a preliminary jackknife
study of tne variable frequency magnitude (VFM) results obtained by
Savino and his coworkers in the Area of Interest experiment. We
compare the jackknife results at three specific stations against the
pivariate methods used previously to perform discrimination. This
section addresses some of the issues raised by Rivers in his
discussion of data smoothing problems associated with the Area of
Interest experiment.

The conclusions and recommendations which have come out of
this study are as follows:
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1. The speed at which feature measurement and the jackknife
calculation operate is so fast that the application of
these methods is limited only by the available data. The
hindrance to further progress in automatic discrimination

d is to be found in the areas of data preparation and the
i fabrication of homogeneous data sets.

. 2. The structure of the programs is flexible enough that

i other discriminants can easily be hooked in to the

§4 computational procedures. The results of these new

o N features are easily added to the discrimination data
base.

3. The improved statistical methods have only been applied
to the VFM discriminant, but similar calculations are now
) underway on the Geotech data base.

| 4. We nave recognized problems associated with single
) station versus network data, and problems associated with
y the incorporation of measurement errors into the
analysis. These, nowever, have not bDeen resolved.

5. A number of known seismic discriminants were not tested
in the Al experiment, some of which are traditional
time-domain methods and some of which are more advanced
waveform modeling methods. It is urged that automatic

S A A

algorithms be implemented for these techniques and
incorporated in the code. This would not only relate the
1 ' contemporary methods more closely to the older methods,
p but accelerate the testing of possible future
2 discriminants. Among the methods that fall into these
classes are time-domain waveform measurements, depth
phases anad ARMA models (see Farrell, 1981, and this
; report, Sections 2.2 and 2.3).

There are three principal research applications for this
', Automatic Oiscrimination code. The first is to facilitate the
testing of known discriminants on very large (104 seismogram) data

SYSTEMS. SCIENCE AND SOFTWARE .




IR S

sets. It is reasonable to expect tnat a complete analysis of a data
set this size could be done in a man-month. The key to reaching
this objective lies entirely in the area of data preparation and
data base management. We recommend, for example, that a routine be
established now for the regular acquisition of all SRO recordings
for every one of the forty or so underground explosions set off each
year. The second research application is the use of the code to
test new discrimination algorithms. The key to reacning this
_ objective is the writing of an automatic code and its incorporation
;i;‘ in the existing package. The third application, and perhaps the
- most exciting, is to use the code for fundamental studies in
- regional and teleseismic wave propagation, in particular, path

dependent dispersion and attenuation for both the body waves and

surface waves. The objective here would be the deterministic
2 modeling of the feature vector wusing source and propagation
. physics. The less we rely on statistics, and the more we can apply
s determinism, the greater our confidence tnat we can identify sources
' located in regions for wnich the nistorical records are sparse or
absent. In our view, this 1is tne real challenge in seismic

PYCLEY
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discrimination.
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2. AUTOMATIC SEISMIC DISCRIMINATION

This chapter discusses the structure and operation of an
automatic seismic discrimination program package now operational on
the PDP 11/70 computer system at the Seismic Data Analysis Center
running under the UNIX operating system. Since this project has
focused upon the design and the implementation of a discrimination
package, very little data has been processed, and no important new
| - results in the area of discrimination per se are presented here.
;i The prime objective has been to fabricate an architecture which will
. allow the incorporation of a much more complete set of
1 discrimination measurement procedures for a planned extension of the
Area of Interest experiment soon to occur. We have currently
., implemented only the variable frequency magnitude, the complexity,
' and the surface and body wave magnitude discriminants. QOther signal
3 measurement algorithms will be applied as this work continues.
j These may take tne form of alternate methods for calculating
' tragitional discriminants (for example, the various ways of
computing the surface wave magnitude), and they may also incorporate
the results of current research in advanced methods of seismic
discriaination, particularly those which may be applicable to

e O

o

recordings obtained at regional distances. Some preliminary results
in this latter area are discussed in section 2.2. Finally, in the
concluding section of this chapter, we discuss problems associated
with incorporating discriminant measurements which it is difficult
to quantify and nence, cannot be incorporated in the current
statistical framework.

Tne procedures discribed here operate by accepting one or more
seismograms from a digital data base, analyzing them, and then
producing, on a station-by-station basis, an assessment of whether
the individual seismograms are more nearly explosion like or
earthquake like. This procedure operates with aimost no analyst
intervention. Essentially, the result of the processing is to

. reduce eacn seismogram to a single number, its scalar discriminant
-- tnis number peing positive if the seismogram is earthquake like
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and negative if it is explosion like. This is clearly a perilous
operation, but tne application of this automatic discrimination
program to a collection of seismograms will not be wused in
3 isolation, for tnere is paralle] work underway at Teledyne Geotech
? in the area of interactive discrimination whereby more searching

questions can be asked of the individual seismograms. The purpose

}. d of the automatic system is twofold. One, it is to make measurements

‘ of features which are thougnt to contain information about event

z type; and secondly, on the basis of training data, to classify these ;
. R features. One important result which accrues from an automatic i

system such as this is that it will make the searching of voluminous

A waveform data bases much simpler than it has been in the past. We :
3 nope this capability will allow the easy recognition of outliers in
the data, that is, stations or events which deviate markedly from
past experience. Thus, the final results of this processing cannot
} be divorced from the training data upon which the discriminant
4 decision is made at the current stage of development. The training
: data we work with is the Area of Interest data set mentioned

g ’
B previously.
2.1  SYSTEM DESIGN
’ Tne automatic seismic discrimination module as currently
implemented consists of two computer programs and four data
structures. The connections between the programs and the data
structures is blocked out in Figure 1. In this figure, we see at
' tne top the first program which is a feature measurement program.

This program accepts seismograms from an event oriented data base,

recognizes the arrival time of phases within each of tne

seismograms, and then automatically makes measurements upon those

'y phases. Correctly choosing the time window over which measurements

| are made is a critical operation for events with body wave magnitude
‘ less than aoout 5.0. For events larger than this, most reasonable
event detectors will find the P-wave onset to within a half-second
or so; the tne surface waves, over most paths, stand well above the
background noise for a broad enough frequency band that the
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dispersion can be measured. To provide added flexibility in the
cnoice of analysis window in the automatic code, there is a
provision to use analyst start time for records which have been
visually picked.

The result of the automatic measurements is the creation of an
event feature working file which contains a vector for each
individual station found in tic waveform data base. This feature
vector contains, for example, the spectral amplitudes at a set of
frequencies; it contains the complexity of a recognized phase; and
it will contain other features derived from new algorithms to be
added later. Typically, the dimension of the feature vector for
each station is of order fifty.

Having located the pnhase of interest in each seismogram and
made tne measurements on that phase, the dot product program takes,
on a station-by-station basis, a linear combination of these
features and evaluates the scalar discriminant for the seismogram.
The feature weights file contains a vector for each station. This
vector is just the set of weights which have been inferred from a
prior analysis of training data.

The procedure for estimating feature weights is shown in the
pottom naif of Figure 1. It involves creation of training data,
feature file, analysis of tne file with tne Fisner discriminant, and
then a jackknife (see Chapter 4) to derive the error probabilities.
As more and more seismograms are processed, the event feature
working files grow. Eventually this, itself, constitutes a new and
expanded data set, and we envisage performing the discriminant and
Jackknife analysis on this feature file to update the weights to be
used to analyze subsequent data which may be processed.

The results of the dot product program are both displayed for
each event as it is processed, and also added into a new data base
which we call the linear discriminant station queue. Data in this
queue summarizes the performance of each individual station over all
the events whicn comprise the total data base. Thus, for every
seismogram contained witnin tne data base, we derive a single number
whicn is displayed and queued for further analysis.

9
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The procedures contained within the feature measurement
program are outlined in Figure 2. There are four principal elements
to tnis program. The first element is a block which acquires a
single seismogram from the data base. The second block processes
tnhe seismogram througn a comb of Gaussian filters to derive the
spectral amplitudes for all pulses occuring within the time window.
The phase detector, which is based upon the MARS detector (Farrell,
et al., 1980) analyzes the envelope peaks and decides when the phase
occurs within the record. Thne final block in this program performs
the feature measurement operation. Not only does it copy the
variable frequency magnitude discriminant (Savino, et al., 1980a) to
the feature file, it also calculates the signal complexity (Rivers,
et al., 1979b, page 33) and measures the spectral magnitudes ﬁb or
MS (Bache, et al., 1980), depending on whether the input data was
a body wave or a surface wave. It is clear from the structure of
this program that additional feature algorithms may easily be
incorporated and added to the event feature file.

The other program element in the automatic discrimination
package is very elementary (see Figure 3). We call this the dot
product program for its principal function is to take a weighted sum
of the several feature vectors measured from the various
seismograms. The weight vectors are based upon prior analysis of
otner seismograms recorded at each station. The dot product
operation thus reduces each feature vector to a single scalar, the
discriminant. In addition to forming the dot product, however, we
also provide estimates of tne probability that the seismogram at
eacn station arose from an earthquake source or an explosion
source. This decision 1is based upon discriminant means and
variances obtained in the course of the analysis of the training

data from each station.

2.1.1 Data Base Preparation

The creation of the event organized data base is the most time
consuming and, in many respects, the most critical operation in the
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The dot product program evaluates the linear discriminant

function dj = g}ii + by where xj is a column vector of features
from the ith recording of an event, and
vector and constant appropriate for the
The scalars, di, comprise the single station estimates of the
character of the event.

and by are the weight
h seismic station.

SYSTEMS. SCIENCE AND SOFTWARE




entire analysis. Data preparation begins with the receipt of subset
format data tapes obtained from Data Services at SDAC. The
individual seismograms contained in the subset tapes are transcribed
into separate time series working files on the POP 11/70 computer.
The subset format header information, giving such quantities as
station codes and event origin time, is displayed on the terminal so
that the analyst can build the event header file. The data base
creation program (see Figure 4) takes the individual time series for
one event at the several stations and tailors them into one of two
uniform formats, one format applying to the short period time-series
and a different format applying to the long period time-series. In
tne pottom half of Figure 4, we show that there are a variety of
interactive display programs wnich can show the three principal
elements in tne event waveform file -- either the event header, or
tne short period time series or tne long period time series.

The structure of the data base and its management currently
relies heavily upon features contained within the UNIX operating
system. This operating system defines directories, subdirectories
ang files wnich are linked together in the tree structure outlined
in Figure 5. In this figure, if we look at the directary, WO (for
multivariate discrimination), we see this directory is linked to
several subdirectories. Reading those links from right to left, a
sundirectory is defined for each distinct seismic data type. The
one that we have entirely concentrated upon thus far is the SRO data
type. This 1is again linked to subdirectories, each of whicgh
pertains to SRO records for a particular event; for example, ev3l7
as shown in the figure. Finally, grouped in this directory are the
five files which actually contain the seismograms for event 317, or
the header information for event 317. SPZ denotes a seismogram file
whicn contains all the short period vertical recordings at all the
SRQ stations for event 317. Likewise, LPZ, LPN and LPE give the
long period vertical, north and east seismogram files. Moving to
the left in this figure, we see that another directory at this level
is the features directory which has branches ta the event feature
files constructed from tne analysis of all the aevents contained in

13
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the data directories. The station directory shows links to
particular station dependent quantities; for example, frequencies
and bandwidtns appropriate for the analysis for each station.
Finally, tne MVD directory has another branch which points to the
weights files used in the dot product analysis.

The makeup of the header file for event 317 within the SRO
directory is shown in Figure 6. We see that the file begins with
event specific information such as the class, either explosion or
earthquake when this is known, the location, the origin time, and
other event related data. Then we see a catalog of all the SRO
stations; the code number used at VSC to identify the particular
components at the particular stations; the short period and long
period sample rates; the start times of either the short period
seismogram's window, or the long period seismogram's window; and,
finally, the geographic relationship between each station and the
event.

Figure 7 shows tne six available short period vertical
component seismograms for the SRO stations which recorded event
317. This figure shows a completed plot of all the data contained
within the short period vertical file for this event. These short
period files are constructed by taking a {ixed length of time
series, whicn is exactly 50 seconds long. Furthermore, the window
for the time-series is tailored such that the 'expected arrival
time' (based on the Herrin tables) for the P-wave at each station
occurs precisely at the fifteenth second within each seismogram.
Since the SRO short period recordings are obtained from an event
trigger, in many cases the pretrigger data is shorter than the
desired 15 seconds, and in all cases the trigger turns off well
before the subsequent 35 seconds have elapsed. To fill out tne
data, zeros are appended to the beginning and ending of each record
to obtain tne predicted body wave arrival at the desired 15 second
time. The result of this is to have a rigidly structured file which
basically contains a reduced travel-time plot of the seismograms.
This shows, for example, that the signal at KAAQ has probably been
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obtained at a regional distance, and indeed the station is only 17
degrees away from the event. Station ANTO has an observed arrival 2
or 3 seconds later than that predicted from the conventional
travel-time table. Further, station TATO was noisy during this
interval of time, and station MAJO has an arrival 2 seconds or so
earlier than that predicted. The scale factors along the bottom
show, from top to bottom, the multiplier used to scale each trace to
fi11 the plot window. TATO (5.8) was a particularly weak recording.

It might be thought that the fabrication of such a rigidly
structured data base entails unnecessary labor on the part of the
analyst before any useful processing can be undertaken. We think,
however, that there are many advantages to this procedure. Probably
tne principal one is that it means that the header file for each
event can be much simpler than would otherwise be necessary; it
means that the data may be displayed with rather simple graphics
programs: it means that the processing can use standard parameters
that do not rely upon the erratic start time which it would
otherwise be necessary to use; and it means that the scientist
examining the seismograms and the results of the processing can
maintain in nis mind a mental image of what the seismograms look
Jike and where the arrival times occur. All these factors make it
easy to control the data quality.

A similar philosophy has guided the construction of the long
period seismogram files, an example of which is shown in Figure 8.
For tne long period seismograms, the available data is tailored so
that the window for eacn station is aligned to place a surface wave
traveling at a group velocity of 3 km/sec at the nine hundredth
second of the 2000 second record. Again, one can see for station
KAAQ, it has been necessary to pad the available data with zeros
poth before and after the seismogram. Station TATO (scale factor
4.5) was again particularly noisy for this event.

The final display (Figure 9) is a geographical plot of Eurasia
showing the Jlocation of the event and tne positions of the
seismogram stations whicn recorded it.
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2.1.2 Feature Measurement

A great variety of techniques have been proposed for measuring
features on seismograms which may yield seismic discriminants. Even
among those which are susceptible to automatic analysis, only a few
have been implemented in actual algorithms in the current automatic
discrimination program. We have elected this approach for two
reasons, tne first of which has been the emphasis of this project
upon the definition of an automatic discrimination architecture and
its demonstration by the actual processing of real data. The second
reason is that tne derivation of feature weights must rely upon the
existence of a previously processed set of training data and the
most accessable set of training data available to us has been the
variable frequency magnitude measurements reported by Savino, et al.
(1980a). It is recognized that many other seismogram features
(discriminants) have been proposed and have been studied in more or
less detail. 'We note particularly, the Al lists of discriminants
presented by Rivers, et al. (1979a), and Sax, et al. (1979a). Other
references for automatic algorithms which we intend to incorporate
are given by von Seggern (1977), Chiouris, et al. (1980), and Bache,
et al. (1981).

The structure of the feature measuremen*t program, one of the
two key elements in the automatic discrimination procedure, was
previously shown in Figure 2. Noted in tne right hand portion of
that figure are the features (discriminants) with wnich we have
abtained actual experience in this project. The discriminants shown
tnere as existing in subroutines are the variable frequency
magnitude discriminant, the time-domain complexity discriminant, and
the spectral methods for estimating the body wave magnitude and the
surface wave magnitude. Because the methods of discrimination which
we use presuppose the existence of a large set of training data from
which discriminant weights can be obtained, the results described in
Chapter 4 of this report pertain most particularly to the variable
frequency magnitude discriminant, and that is the only discriminant
which we are able to process at the moment through the entire
automatic discrimination routine.
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While developing the feature measurement algorithms, extensive
use has peen made of visual ‘displays of these measurements in order
to check the calculations. A selection of these displays is shown
‘ f next to demonstrate in more detail the methods of feature
measurement and some of the parameters used in the several

;{% ’ algorithms. When processing a large body of data, it is expected
’3} that these graphical displays of the various features will not be
Qf invoked, and, indeed, the display of the features more properly
i falls 1in the area of interactive discrimination rather than
%;f', automatic discrimination which focuses on the end product; that is,
o the classification of the various seismograms.
,é" Figure 10 shows, at tne top, the seismogram for event 317
- (Shagan River explosion) recorded on the short-period component of
5 the SRU station at Kabul. Below the seismogram, the narrow band

envelope functions are plotted for ten frequencies spanning the
- range from 0.25 Hz at the top to 4.5 Hz at the bottom. Kabul is
j only slightly more than 17 degrees away from the Shagan River; so
' tne largest phase picked for this event does not correspond to the
first arrival. From the widths of the envelope peaks shown on the
‘ various narrow band traces, it can be seen that the time resolution
of the filters used to process this seismogram all have a time
f resolution on the order of one second. The dotted line up the page
shows the time at which the automatic detector identified the
biggest phase on the seismogram. For frequencies of 2.0 Hz and 2.5
Hz, it can be seen that the phase arrival corresponds to a dip in
tne spectrum. The actual feature which 1is measured for these
envelope functions is the amplitude of the peak in the envelope
either on, or nearest to, the dotted line defining mean phase
arrival.

The comb of filters usually used for processing short-period
seismograms, while spanning the same frequency range as that of
Savino, et al.(1980a), contains ten rather than forty frequency
bands and has a somewhat lower Q. The number of filter center
frequencies has been restricted in order to limit the dimensions of
the feature vectors.
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The result from processing the long-period seismogram from
event 317 as recorded at Kabul is shown in Figure 11. Although the
long-period SRO data contains three channels, vertical and two
horizontal, we analyze at the moment simply the vertical channel.
Again, the top of this figure shows the raw seismogram. Below that
are the ten narrow band envelope functions spanning the frequency
range 0.01 Hz to 0.1 Hz, with a dotted line showing the time at
which the automatic phase detector identified the maximum signal
amplitude. Here, again, the peaks in the envelope function deviate
as much as 10 seconds from the mean phase arrival time, and the 1
feature which is measured from these envelope functions is the
amplitude of the envelope peak nearest to the mean phase arrival
time.

The result of the narrow band filter analysis of the
short-period vertical and the long-period vertical seismograms is a §
set of 20 ground motion amplitudes, ten for each frequency band.
8 These ground motion amplitudes (expressed in nanometers) are
' corrected for instrument response and then converted to magnitudes.
k" For P-waves, the usual Gutenberg formula

my(f) = log)q(A(t;)f)*B(a)

is used, where tne distance correction is taken from Veith and
Clawson, (1972). For surface waves, the formula

is used (Dahiman and Israelson, 1977, page 69). A plot of the ten
short-period spectral magnitudes for the Kabul recording of this
event is shown in Figure 12. Also shown by the dotted line at the
bottom of Figure 12 is a spectrum calculated for a noise window
preceding the arrival of the phase. The noise spectrum is defined
by the formula

|
| mo(F) = logyo(Af) + B(a).

where A is the mean envelope amplitude in the noise window,
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Figure 12. Signal-to-noise ratios may be estimated from plots of narrow

band envelope magnitudes and pre-event noise magnitudes. The
solid curve in the figure (for the phase identified in Figure 10)

is just the VFM part of the event feature vector for station
KAAQ.
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Ten separate long-period magnitudes are measured and written
to the station feature vector for each event. It is not possible at
prasent, however, to take the linear combination of these ten
magnitudes which best performs discrimination because there does not
exist a set of training data from w.ich the discriminant weights can
be evaluated. [t is possible, however, to make traditional

bivariate mb-MS plots for each station and each event to compare
the short-period and 1long-period estimates of the spectrum
magnitude. An example of this is shown in Figure 13. For making
this plot, the simplest possible spectral estimates of surface wave
and body wave amplitudes have been used. These are defined to be
My, = m (1.0 Hz) and ﬁs =M, (0.05 Hz) witn no  spectral
smoothing or other weighting applied. The slanting line across this
figure shows the traditional discrimination relationship

MS = mb-1000

As tne quantity of processed data grows, that is, as the
feature file becomes larger and larger, we want to compare the new
results against all previous ones. Again, this function eventually
will fall in the domain of interactive discrimination, but simple
bivariate plots of the VFM discriminant are useful for comparing new
results against the previous VFM data taken by Savino, et al.
(1980a). The example shown in Figure 14 superimposes plots of ﬁb
(4.0) and ﬁb (0.55) for event 317 at KAAO on top of the data
points calculated by Savino, et al. for Area of Interest seismograms
obtained at the same station. It is clear that, upon the basis of
these two isolated frequencies alone, event 317 falls within the
explosion region of the VFM discrimination plane identified earlier
by Savino.

2.1.3 Linear Discriminant Analysis

[t was described earlier (Section 2.1 and Figure 3) how
automatic discriminantion is effected by taking a linear combination
of weignts multiplied by features (the dot product) for each
station. The principal end product of this calculation is a display
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Figure 14. As the event feature file grows, the bivariate plots of features
(in this case mp (high) versus my (low)) for many events at
a single station may be shown together.
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similar to that shown Figure 15. The top part of this figure shows
information pertaining to the event. This is simply copied from the
event header file and written out to the interactive terminal. The
bottom half of the figure shows the results uf performing the
automatic discrimination for the set of stations listed in the left
hand column. For each station, the next two columns give the number
of features 1located in the feature vector, and the number of
features for which there are corresponding weights contained in the
weights vector. The scalar discriminant d*, evaluated by
calculating the dot product of the features for which weights have
been found is shown next. (The misclassification probabilities are
to appear as two further columns.) At the bottom of the page, the
scalar discriminant d* for all available stations is plotted on a
norizontal scale ranging from -2 to +2, our convention being that
when the discriminant d* is negative, the event is explosion-like,
and when it is positive, it is earthguake-like. This plot of d* is
similar to those discussed later in Chapter 4 of this report.

Figure 15 shows tnat when the weights for station CHTO, KAAO,
and TATO, as derived from the Fisher discriminant analysis of the
Area of Interest VFM data, are applied to a previously unclassified
event (Event 317, a Shagan River explosion), it is correctly
classified as an explosion at all three stations.

As more data are processed, not only will the feature files
for each event and all stations grow, but also the set of
discriminant scalars for all stations and all events will accumulate
as well (Figure 16). It is planned that these two data sets will be
examined in order to identiy anomalous events or peculiar
stations. These results of the processing are to be used to define
a new augmented data set comprising the catalog of feature vectors.
They are then to be analyzed afresh in order to derive new feature
} weights so that the reliability of the discrimination of new events

may be improved.
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As the suite of processed events grows, the performance of the
linear discriminant will be studied on a station-by-station

basis by generating station-oriented rather than event-oriented
displays.
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2.2 TELESEISMIC DISCRIMINATION PROCEDURES

One result that has become apparent from this work is that
there is a clear requirement to separate both conceptually, and in
the software, the regional discrimination problem from the
teleseismic discrimination problem. Several persuasive arguments
have led us to tnis approach. First, of course, much more is Known
about teleseismic discrimination: algorithms for discriminants can
be written down; reasonably good data bases have been collected
together; algorithms have been tested in the batch-processing
environment during the AI experiment; and, finally, the definition
of a "hands-of f* automatic code is well underway. Another reason
for separating the two discrimination problems is that the
short-term objective of this project must be to concentrate on the
teleseismic discrimination because of its great impact on the GSS
system; yet, not too far in the future, we must be ready with
automatic ways of processing single channel or event organized
regional signals in case of NSS seismic network deployment. For
example, the Regional Event Location System (RELS) with which the
automatic discrimination system must be compatible, is focused on
regional research, yet initially it will have a data base consisting
mostly of teleseisms. Finally, certain practical problems such as
association, location and magnitude estimation are performed quite
differently for the two classes of signals.

Emphasizing the conceptual differences between regional and
teleseismic discrimination and the practical reasons why parts of
the software should probably be kept distinct somewhat overstates
the polarization that we believe actually exists. A trivial merging
of the two problems exists with current operational requirements,
for a single event can appear as a regional signal at some stations
and as a teleseism at others. This dichotomy was perhaps most
clearly apparent in the work of Savino, et al. (1980a) where
effective discrimination at Kabul (KAAO) was found to require
classifying events by distance, i.e., separating them into four
regional or teleseismic categories. It is anticipated that there
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will be large areas of overlap between the teleseismic
discrimination problem and the regional discrimination problem.

When the data to be processed consists of multiple records
3 from a single event (i.e., associated signals) rather than an
’ isolated waveform, there are two possible ways to proceed. One way

nk e presupposes that, as an adjunct of the association process, a valid
v location has been found. In this case, we can a priori sort the

; individual traces by epicentral distance and thus classify them as
2! being either regional or teleseismic. Alternatively, we can
temporarily ignore the location information, sort automatically, and
the ex post facto use a separate associated location/algorithm.

‘3”' A discussion of the current feature selection algorithms is
. presented in Section 2.1b. We elaborate here other matters which
5 pertain to Teleseismic Discrimination, discussing specifically: (a)
. definition of discriminants, (b) feature selection and measurement,
and (c) testing and evalution.

(a) Definition of Oiscriminants

Telesismic discriminants may be separated into two categories,
those which require prior knowledge of the event location and thase
which do not need such knowledge, or which depend on location
knowledge only weakly. Generally speaking, the requirement for
Tecation information is equivalent to a requirement for associated
signals at three or more widely separated seismic observato.ies.
(Altnough large arrays such as LASA and NORSAR can locate an event
with fair accuracy, the smaller arrays in more common use have beams
much too broad to furnish more than very approximate location ‘
estimates.) In the former category fall the location discriminant i
itself, depth and network mb-MS. In the latter category fall
complexity and several frequency domain discriminants, dincluding

o e

VFM, or spectral ratio, automatic my and MS and higher moments i
of frequency.

Location and depth are peculiar discriminants, the use of
which in the context of automatic signal processing is not clear at
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this time. Althougn automatic phase identification and timing is
necessary for automatic location (and depth estimation), it is
certain that location and depth must be treated quite differently
from other discriminants. The crux of the matter is that the
problem of bias in the training data is paramount for these
quantities. Furthermore, depth, when available, 1is either of
overwhelming significance (e.g., deep (100 km) earthquakes can look
explosion-1ike by all the usual measures) or is irrelevant. Thus,
knowing that an event is shallow, say less than 35 km, is useless
for discrimination. Location is peculiar in a different sense.
There are large parts of the area of interest in which neither
geartnquakes nor explosions have occurred. Suppose now a new event
is found to locate in a previously silent region. [Is that fact
taken alone of any use in discrimination? Conversely, suppose an
event js found to occur in, or near, a known test site; is that
information alone useful for deciding whether the event is an
explosion or earthquake? In both these instances, the 1location
information might be the key that intensive analysis is warranted,
but it seems not to help answer the discrimination problem.

It is absurd, of course, to suggest that location is
irrelevant for discrimination (although indeed some analyses in the
Al discrimination experiment did ignore location). The clear way
location enters is througn the source and station regionalization of
discriminants. An example of source regionalization is the problem
of Lake Baikal. An example of station regionalization was the
discovery by Savino, et al. (1980a) that, for the VFM discriminant
to work most effectively on the Al data set, it was necessary to
select a distinct pair of separation frequencies for each station,
and for a given station there is some evidence that the separation
frequencies depend on epicentral distance.

The mathematical way of expressing this geophysical phenomenon
is to say that our data (discriminants from many events .at many
stations) do not come from a single homogeneous population, or
rather two populations, earthquakes and explosions, but instead,
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from a multiplicity of populations, each with its own
variance-covariance structure. It is a well-known principle in
statistics that if you mix good data together with bad data, the bad
data always dominates. The practical illustration of the principle
in the context of seismi¢ discrimination is the comparison of VFM
scatter plots for single station measurements versus network
averages. Based upon network average VFM scatter plots, one would
be tempted to dismiss the method because of the large overlap in the
explosion and earthquake populations. It is only when the VFM
discriminant is studied on a station-by-station and source-region by
source-region basis that its power emerges. It is quite possible
that tnere is a similar hidden structure 1in the complexity
discriminant.

(b) Feature Selection and Measurement

Feature selection (Calvert and Young, 1974, p. 224) is the
word used in mathematical statistics to connote the first (and often
empirical) step in the hierarchy of operations whereby one distilils
an enormous quantity of data down to a few bits of information.
Oftentimes tne process of feature selection is guided by intuition,
or ancillary information. For example, we have a physical reason
for supposing that earthquakes might be more complex than
explosions, or that explosions generate less surface wave energy
than earthquakes of the same bodywave magnitude. These are features
which, if it is plausible, ought to be selected for further study.
The purpose of feature selection is to reduce the size of the data
space so that exotic numerical calculations are possible. One hopes
first tnat by combining the features together, one can improve the
performance of the discrimination procedure with poorer quality data
(i.e., lower magnitude). Furthermore, the calculations required to
assign classification probabilities from analysis of numerous
training data are computationally unfeasible without feature
selection.
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We follow the narrow definition of terms common in the
statistics texts and distinguish carefully between feature selection
and feature extraction., Feature extraction we apply to the next
hierarchical procedure where some method, for instance, principal
component analysis, is wused to effect a further reduction in
dimensionality, but based upon rigorous mathematical procedures
rather than qualitative or  semiquantitative procedures. For
example, with reference to the Al experiment, the feature selection

(or measurement) part of the analysis was the procedure of choosing
and calculating a number (between 20 and 40) of parameters which
were thought to contain the useful discrimination information in a
100 to 500 term seismogram. The process of feature extraction then
showed that between two and four of the selected features (or linear
combinations of them) were sufficient for reliable discrimination,
For the VFM method, the selected features were 40 narrow frequency
band magnitudes of the P-phase, and the extracted features were the
two frequencies (after polynomial smoothing) for which
discrimination worked best. Likewise, the other studies used a
different selection of features but showed that just three or four
1inear combinations hold most of the variance in discriminants.

The method which has been implemented for automatic feature
selection relies heavily on the QHD processing of individual
seismograms. There are three principal steps in the analysis (see
Figure 2). The first of these, called Filter, consists of a data
edit task (TSEDIT) and a multiple narrow band filter (NBF) task.
The second step, Detect, is a phase identification task which picks
the arrival time of the event. The performance of the current
detector has been described by Farrell, et al. (1980), but the
advanced phase detection algorithms described above have not been so
exhaustively studied. Finally, the Feature Selection procedure
consists of further refinement of the frequency domain discriminants
(for exampie, applying instrument response correction, or converting
signal spectral amplitudes into magnitudes), and calculation of time
domain discriminants and storage of these features on an event
discriminant file.
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{c) Testing and Evaluation

Whereas feature selection and automatic waveform processing
are at a relatively advanced state of development, the multivariate
statistical procedures are at a more rudimentary stage. The
mathematical statement of the problem, as we currently see it, is
described in Chapter 3. In casting those equations into the
geophysical context of discriminating earthquakes from explosions,
we have identified three potential problem areas which it is felt
should govern the testing and evaluation of the automatic
discrimination system. These potential sources of difficulty are:
(1) accounting for missing and erroneous data; (2) combining single
station discriminants into network (or event) averages; and (3) the
size and availability of the training set,

The problem of missing and erroneous data is a very practical
one which we do not yet know how to treat mathematically. We are
lead to consider erroneous data from the following argument. As
the event size decreases, it seems reasonable that the process of
feature selection becomes less precise because the signal-to-noise
ratio in seismograms themselves  degrades. Phases  become
misidentified, holes appear in the spectrum from noise interference,
the complexity measure sees less and less signal, but more and more
noise, and surface wave magnitude disappears entirely. What are the
implications for discrimination, and how does one quantify this
benavior? It is certain that simply associating a standard error
{based, for example, on the noise in each record) with each feature
is not sufficient because we do not know how to wuse this
information. Wnhat we would like to assume, perhaps, is that the
covariance in the feature vector consists of two parts, a
measurement noise part and a geophysical noise part; and, further,
that the measurement noise part can be objectively estimated from a
single record, whereas the geophysical part requires a multitude of
events and stations.
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Another place that missing and erroneous data (it is useful to

tnink of missing data as ordinary data with absurdly large error

} bars) affects the automatic processing is the case when one station
may not report any data from a given event. For example, take a

9 source near the Caspian Sea and assume Kabul is not functioning.
: Then, it is known from the AI experiment (Savino, et al., 1980a)
' that Kabul was particularly powerful at discriminating for this
source region. However, with the best station now missing, how is

it best to treat the data available for the particular event in

question? We suspect that the best answer would be to reassess the

entire historical data base, calculating a unique discriminant

function for the subset of the historical data which best matches

the event in question. To throw Kabul out in this hypothetical

example would mean a massive reevaluation of the training data which ;

is clearly possible in the off-line (or interactive) environment,

but not realistic for the automatic program package. One can easily

imagine less disastrous cases of missing data (for example, holes in

the spectrum at particular fregquencies), but again, quantifying the

impact of this phenomenon on discrimination and probability

assessment is not yet understood.

A second problem area is the method of joining single station
features into a network discriminant in the case where associated
signals are being processed. Suppose there are n stations and each
of them supplies a single seismogram from which we measure m
features. One, first of all, could lump everything together and

' perform discrimination on a single n x m dimension feature vector.
To effect discrimination and assign probabilities, one would have to

2 process the training data similarly, and this would entail numerous ';
costly computations. At the other extreme o0¢ dimensionality, one

could average eacn of the m features over all n stations, perhaps as

‘ network magnitude is now usually found, following the method of
Ringdahl. The clear difficulty here is that the station dependence

‘ of discriminants is ignored, and we know from the Al discrimination
results that a less powerful test results. The golden mean, we
feel, lies in a two step procedure whereby an n + m dimension
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problem 1is solved in stages. First, each station is processed
separately, yielding n "votes" as to the event type. The individual
station votes then must be combined to get an overall discriminant.
We do not yet know how to count the votes in an optimum sense, nor
do we know how to attach a probability statement to the final
decision,

The third and perhaps most important problem area, and the one

;that affects testing and evalution most directly, is size and

availability of the training data. Practically, it is the small
events (say m, < 4.5) which are of most concern to automatic
discrimination because of anticipated treaty limitations and the
fading out of the mb-MS discriminant. This is the event range
which is particularly pooriy represented in the current Al data
set. Although events in the required yield range are rare, there is
data which ought to be collected togetner. Another problem relating
to training data is the use of array information. There is no
question but that it must be incorporated; yet this cannot yet be
achieved because it is not known how to beam small arrays without
incoherently attenuating the high frequency part of the signal
spectrum. This is a well-recognized problem and is susceptibie to
solution, but better beaming procedures must be implemented before
tne array data can be utilized effectively for automatic
discrimination. One further point pertaining to the training data
is the guantity of historical data which is to be available on-line
to the automatic discrimination processor. When the data set
oecomes large enough, one wants to conduct a variety of
discrimination experiments using different partitionings of the
data; for exampie, by magnitude, by source region, by path type,
etc. These will be done by making one complete pass with the
feature selection code, but many different combinations of feature
vectors will be taken for the statistical analysis. Thus, we
recoomend that further multivariate statistical research be
congucted in an off-line mode, and that the automatic processor use
the results of that research by simply applying a predefined
algorithm to the discriminant vector. One reason for recommending
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this procedure 1is that there will be available an interactive
discrimination system as part of RELS, and we feel that this is the
more effective way to search the archive and fine-tune the

multivariate statistical analysis.
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3. AUTOMATIC MULTIVARIATE STATISTICAL DISCRIMINATION

3.1 THEORETICAL CONCEPTS

Our current perception of automatic methods for seismic
discriminaion is based on standard statistical approaches similar to
those summarized by Tjostheim (1981) and discussed in many
statistics textbooks (e.g., Young and Calvert, 1974; Patrick, 1972;
Rao, 1973). We highlight here some of the concepts underlying the
linear discrimination algorithm discussed in subsequent sections.

The seismic discrimination problem can be posed statistically
by treating the various discriminants measured from an event as
components of a vector random variable X, which 1is called a
discriminant vector (also feature vector or pattern vector). The M
components of x may include any available measurements, including
dissimilar quantities (e.g., mb'Ms’ complexity, VFM magnitudes
at various frequencies) or a mixture of individual station data and
network averages.

Given a measurement of x from an unidentified event, the
discrimination problem is to infer the event's class, C. C can take
the values C1 (explosion class) or C2 (earthquake class). The
inference of C must ultimately be based on information about the
multivariate probability densities of x conditioned on the two
classes of events: f(x|C;) and f(x[C,). The mean of f(x|C,),
for example, describes where in M-dimensional space the discriminant
vectors from explosions are expected to fall. Its second and higher
moments describe the expected variability (scatter) in the data,
such as that caused by inherent differences between events,
variations in earth structure, and measurement errors.

When f(x|C;) and f(x|C,) are not known, they must be
estimated - whether explicitly or implicitly - from training data
sets. These are the discriminant vectors observed from past
identified events of each class. The explosion training set will be
denoted as the set of vectors x;.4y, =1, .., Nj, and the
earthquake training set as Xi(2) i=1, .., NZ‘
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The class of an event cannot, in general, be determined with
100 percent certainty; so a solution to the discrimination problem
must be a statistical statement. A variety of ways of expressing
one's uncertainty about C are possible. One is in the form of
“posterior probabilties” that the event belongs to €, or Cy:
P(Cllﬁ) and P(Czlé), respectively. The adjective ‘“posterior"
refers to the fact that the probabilities are determined after x has
been measured. Posterior probabilities require the assumption of
prior probabilities of C1 and CZ’ P(Cl) and P(CZ), which
anticipate the relative likelihood of each class before the event
has occurred. Normally one would set P(Cl) = P(Cz) = 1/2.
Bayes' Rule gives the posterior probabilities as

| £(x1C,IP(C))
PR = FIRTe TPTE T+ FUR[C,IPTE,) ()

P(Colx) =1 - PICIX)

Interpreted literally, this type of solution does not classify the
event, but simply describes how  earthquake-like  versus
explosion-like the event is.

A second type of solution is an actual classification based on
a decision function D(x). D takes scalar values and assigns a class
C to an event, according to the rule

¢- ¢ when D(x) <0

A (2)
C=¢C, when 0(x) >0 .

The equation D{(x) = 0 describes an (M-1)-dimensional hypersurface
which divides discriminant space into "decision regions" Ay and
.ﬁz(see Figure 17). Equation (2) thus tests whether x falls in
.ﬁ] ora?z, and so is equivalent to
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Figure 17.

(]

3?2 (D > 0)

X3

Sghemqtic illustration of a decision surface in three-dimensional
discriminant space.

R,

Figure 18.

I1lustration of the error probabilities of a decision rule
in terms of the probability distributions of the decision
function D.
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C=¢ when Xxedh

~ (3)
C= Cz when _x_t-:Jz2 .

b ot
-y

A classification € is useless without a measure of its
accuracy. Misclassification (or error) probabilities, Py and
Prr» serve this purpose. We qFfine Py as the probability of ]
assigning aﬁ event to Class 2 (C = Cz) when it really came from J
class 1 (C = C;). Similarly for p; ;. In terms of the 5
probability distributions of x and D, the error probabilities are

"I’f

A

Pry =/ d"x f(xIC,) = / d f(0lc,) .
R 0

gk d
. .

d"x f(xIC;) =f @ f(olc,)
0 (4) a

Y

1
Figure 18 illustrates these difinitions. We note that for a given

function D(x), the univariate distribution f(D[C) is determined by
the multivariate distribution f(x[C).

The decision approach involves deriving the decision function
that minimizes the error probabilities in some sense. The Bayes
criterion, for example, chooses D(x) to minimize the expected "risk"
of misclassification defined by

p = P(Cl) cp Pt P(Cz) 1y PIpe (5)

where P(Cl) and P(CZ) are prior probabilities and c; and I
are assigned costs of misclassification. For P(Cl) = P(CZ) =
1/2, ¢y = 110 the decision function minimizing p becomes

D(x) = log f(5_|c2) - log f(xICy) . (6)

Equations (1), (4) and (6) provide theoretical solutions to
the discrimination problem when the distributions f(xIC,) and
f(5|c2) are known. In the seismic discrimination problem, as in .
most scientific problems, the distributions are not known. A
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variety of approaches have been developed to handle this situation,
including nonparametric approaches which assume no knowledge of
f(xIC) (e.g., nearest neighbor methods) and parametric approaches
which require the estimation only of certain parameters of f(x|C),
such as its mean and variance. We will not attempt to review the
various methods here. The following sections describe a particular

| : approach we have developed which deals realistically with the
i limited training sets available in the seismic discrimination
E problem.

3.2 FISHER LINEAR DISCRIMINANT

In designing a statistical method for seismic discrimination,
we have kept the following considerations in mind:

t e The method should require as few assumptions about f(x|C)
as possible.

- e Only a limited number of parameters of f(x|C) can be
estimated accurately from the training sets.

e The method should provide realistic estimates of the
error probabilities (py; and pyy) associated with the
decision function D(x).

e The algorithm for obtaining DO(x), pr and pypr (and
posterior probabilities if they are desired) should be

computationally efficient and suitable for automation.

Within these restrictions, the method should find the best decision
function; i.e., the one with the smallest error probabilities.

A rather simple approach that can meet the above requirements
is linear discrimination, which assumes a decision function of the
form

D(x) = 2T5 +b , (7)

= where b is a scalar and a is a vector containing M coefficients, or
E | weights. Each coefficient in a multiplies one of the discriminants
% in x. The decision surface O0(x) = O becomes a hyperplane in
M-space. The objective in this approach is to find the a and b that

minimize the error probabilities.

47

SYSTEMS. SCIENCE AND SOFTWARE




From Equation (6) it is apparent that a linear discriminant
function does not provide an absolute minimum to P and P11
unless f(5|c1) and f(x |C2) have a particular functional form:
the two distributions must be Gaussian with equal covariance
matrices. However, the possible non-optimality of linear
discriminants is of little consequence if there are insufficient
training data to establish that the true distributions are
significantly non-Gaussian, or have unequal covariances. Even then,
the best linear discriminant might perform satisfactorily.

It is important to realize that with f(x|C) unknown, one
cannot determine the error probabilities of any discriminant
function exactly, but can only obtain estimates inferred from the
training data sets. As a consequence of this, it may be impossible
to distinguish the error probabilities of linear discriminants from
those of nonlinear discriminants. If existing or future training
sets prove adequate for making this distinction, straightforward
extensions of our method to nonlinear functions can be made.

Because P and P11 must be estimated, the criterion that
D(x) minimize these probabilities does not 1lead to a direct
algorithm for obtaining the optimal a and b. Therefore, we define a
different criterion, one that has the effect of making the error
probabilities small, and which leads to a direct algorithm for a and
b. After a and b are obtained, P and Prp can be estimated to
see how good the resulting D(x) actually is.

The criterion we use to obtain the optimal linear D(x) is
given by the Fisher linear discriminant. The Fisher discriminant
attempts to maximize the separation between the distributions
f(DIC]) and f(DICZ). Separation is defined in terms of the
means and variances of the distributions, as estimated from the
training data. For a given a and b, the training sets produce
sample values of D for each class, which we denote Di(l)' i=l,
ces Nl’ and 01(2), i=l, .., NZ:

T
Di(k) = 3 %4(k) * P (8)
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where kK may be 1 or 2. We let mD(k) and Sg(k)’ respectively,
denote estimates of the mean and variance of f(Dle) obtained from
the samples Di(k)' Then the Fisher discriminant satisfies

(Mo rpy =M qy)?
v2 = 0(2) mo(l) = maximum

2 3
Sp(1) ¥ Sp(2)

(9)
M(2) ~ Mp(1) =}

Figure 19 1illustrates this measure of separation with a simple
example.

To express w2 in terms of 3, we let the vector Bk) be an
estimate for the mean of f(x[C,) and the matrix S(k) be an
estimate for the covariance matrix of f(5jck). For example,

1
By = F & Ak

(10)
1 T
Sk) *WT 55{ (X5 00) M) (Kie) M) -
Fancier estimates can also be used. We then rave
T
(k) * 2 0qk) TP
(11)

2 T
(k) = 2 3(k) 2

so Equation (9) becomes (Gnanadesikan, 1977, p. 83; Young and
Calvert, 1974, Equation (4.86))

49

SYSTEMS. SCIENCE AND SOFTWARE

ot ran e et

e e L AP P Wi M e

— SO S S VB iy o




!
'
i

-

’ *2
§
4 Class 1
¥ Training Data
W |
3 Class 2
i Training Data
-
-
&’
A

Figure 19. Illustration in two-dimensions of the separation of two classes
of training data by a linear discriminant.
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T
v2 . (a am) = maximum
asa
(12)
am=1
where
am = Moy )
(13)

$ =351y * 52

The solution to Equation (12) is (Gnanadesikan, 1977, p. 84; Young
and Calvert, Equation (4.93))

is_sr_‘i.m_, . (14)

sm'S”"am

It is clear that vz = maximum Joes n~% constrain b. The
optimal choice of b 1is difficult to define without making
assumptions about the functiona! form of f(D|C). The following
value of b is a reasonable choice that tends to make P and Pr1
equal (Young and Calvert, equation (4.95))

T T
-$ am - S am

b
So(1) * Sp(2)

where So(k) is given by Equation (11) and a by Equation (14).
When sD(l) equals SD(Z)' b reduces to the constant which may be
derived from the assumption that the two populations have equal
covariance matrices (Anderson, 1958, Equation (6.4.5), p. 134).

3.3 FEATURE EXTRACTION BY DAMPING

S(k) (k=1 or 2) is an M by M matrix which estimates the
true covariance matrix of f(x[C, ). 1Its accuracy depends on the
relative sizes of M (the dimension of x) and N (the number of
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where the columns of U are the orthonormal eigenvectors of S and A

samples of x 1in the training set). It 1is desirable to have
Nk » M. If Nk is too small, the {naccuracy of S(k) causes
S(;), and thus a, to be unstable. In other words, a is weakly
constrained by training sets with too few samples. When this
occurs, D(x) will perform well in classifying the training events
but may perform poorly on new events. With a good algorithm for
estimating P and P11 (e.g., Jjackknifing), this will be 3
reflected in large estimates of these error rates.

The usual solution to this problem is feature extraction: a
statistical procedure for transforming x to a vector x' of smaller
dimension M'. (It is assumed that feature selection was done in
creating x such that all the features in x are believed to be
potentially good discriminants.) Given M', the desired number of
new features, an ideal feature extractor would find the M'
combinations of the original discriminants that could produce the
best discriminant function D(x'). It is very difficult, if not
impossible, to do this since error probabilities cannot be estimated
until after feature extraction has been performed.

A commonly applied method of feature extracation {is the
principal component method. In this method, the pooled covariance
matrix of x (defined by Equations (10) and (13)) {s decomposed into
its eigenvectors and eigenvalues:

s =unt (16)

is a diagonal matrix containing the eigenvalues of S. The principal
component method takes as the new feature vector

|
x'=Ux (17)

where UL is an M by M' matrix containing the eigenvectors
associated with the M' largest eigenvalues. There is no guarantee
that x' contains M' good discriminants since the projection of am
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onto U, 1is not considered. (1f UI am were by misfortune

zero, x' would be almost useless for discrimination.) Nevertheless,
r the principal component method has proved satisfactory in many
applications (Tjostheim, 1981).

We have designed a variation on the principal component method

) which is more cor}venient and which promises to perform better
because it takes U am into account. Feature extraction as such is

not done. Instead, a damping term is added to S to form a new

|
1 E covariance estimate S(e):

PRt

S(e) =S + ol
(18)

*S5(1) * Szt el

where e is a scalar damping parameter and I is the unit matrix.
S(e = 0) = S, the undamped matrix used in the last subsection. We
then obtain a by replacing S with S(e):

-1
ale) = —3lel _to (19)

am' S(e) = am

The damping of S is equivalent to adding e to each of its
eigenvalues. Denoting the eigenvalues as )\J- and the associated
eigenvectors (columns of U) as uys a(e) takes the form

_ M o i
ale) = jzal y_j -i__xj r— . (20)

Thus e diminishes the contribution of u; to a when A is small,
which is consistent with principal component feature extraction.

' However, 'y will still contribute to a if ¥ TAﬂ is
| sufficiently large; {.e., if the means of the two event classes
! differ significantly in the Yy direction.

’
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A refinement to both the principal component method and the
damping method is achieved by using the correlation matrix R in the
analysis instead of S. R is a scaled version of S:

R = W12 gy l/2 (21)

where W is a diagonal matrix containing the diagonal elements of
S(wij = Sij 830 implying Ry =1). The eigenvalues of R
are independent of the units chosen for x; so the individual
discriminants in x are normalized in a natural way. For the damping
method, this refinement corresponds to redefining S(e) as

S(e) =S +eW . (22)

It is not obvious how to determine the optimal value of e;
i.e., the value that results in the smallest error rates for D(x). 1
One could base a choice of @ on the expected uncertainties in §
inferred under the hypothesis of a particuiar distribution
f(xIC). A trail-and-error approach might be more effective,
however; namely, one could compute D(x) for several e's and select
the one yielding the smallest estimated error rates.

Examples of damped discriminant weights a(e) are shown in ’
Figures 20 and 21. The data used in these examples are VFM
magnitudes determined at two SRO stations: KAAO  (Kabul,
Afghanistan) in the first example (Figure 20) and CHTO (Chiang Mai,
Thailand) in the second example. The training events are the Al
events used in the Discrimination Experiment. The set of training

events is not identical in the two examples, mainly because
teleseismic events were excluded from the KAAO training set.

The feature vector x in each example has dimension 40 and
contains mb(f) values at 40 frequencies between 0.4 and 5.0 Hz.
From these 40 data, mb(f) at two frequencies (one high and one
Tow) were selected as features for the Discrimination Experiment.
The purpose of the examples shown here 1is to see what the
statistical analysis determines as the optimal combination of the
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Training set means and five sets of feature weights determined

from VFM data at station KAAO.
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Figure 21, Training set means and five sets of feature weights determined

from VFM data at station CHTO.
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entire set of 40 mb's. We point out that the Discrimination
Experiment showed that the VFM discriminant from KAAO performed very
well in classifying Al events, while the CHTO data performed poorly.

VW T AR, s oW YT e

In each of Figures 20 and 21, the top frame shows the sample
means of the explosion and earthquake training data (m(l) and
E(Z) from Section 3.2). The 40 components of each vector mean are
plotted as a curve against a log frequency scale, and thus are
displayed like a Fourier spectrum. We note that before doing the
statistical analysis, the data were converted to a relative
magnitude Amb(f) by removing the average value of each feature
vector (the average over frequency). Comparing Figures 20 and 21,
we see that the separation between the explosion and earthquake
means is much larger at KAAQ than CHTO.

e e we

i e

In each example, discriminant weights were computed for five
. values of the damping parameter e, using the correlation damping
- scheme (Equation 22). The five sets of weights are plotted as a
e function of frequency in the bottom frame of each figure. The
» weights obtained with the smallest e are plotted at the top of the
: frame and those with the largest e (most damping) at the bottom.
The zero line is drawn through each weight-versus-frequency curve,
but the vertical scale for each curve is arbitrary and not shown.

Labeling each set of weights in Figures 20 and 21 is the value
the weights give to the separation parameter v (defined in Equation
12). This measures how well the discriminant plane O0(x) =0
separates the two classes of training data. For our purposes here,
v >2 implies reasonably good separation. Comparing the two
stations, we see that the KAAQO data separate the event classes much
better than the CHTO data.

The separation parameter decreases as the damping parameter
increases. This does not mean, however, that the lowest damping
provides the best discriminant function since good separation of
training events does not imply low error rates on new events. In
these examples where the number of training events is quite small
compared to the number of features, the weights for small e are
probably unstable; so the heavily damped weights are likely to
perform better on new events.
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In both Figures 20 and 21, one can see that increasing the
damping has the effect of smoothing the weights over frequency.
Under-damped weights oscillate rapidly and attempt to use spurious
wiggles in the mb(f) spectra as a basis for discrimination. The
weights obtained with the most damping extract a very robust feature
from the data, particularly in the KAAO example (Figure 20). They
essentially subtract the average m below about 1 Hz from an
average m, over one or more high frequency bands - the actual
bands varying from station to station. This is consistent with what
we learned in the Discrimination Experiment.

3.4 JACKKNIFING TO OBTAIN ERROR ESTIMATES

When the probability distributions of x and D(x) are unknown,
the error rates p; and p;; cannot be computed from Equation (4);
they must be estimated empirically from the training data Xi(k)*
Estimates of P and Pp are easily obtained by counting the
fraction of training events misclassified by D(x); that is, the
events that make D,(y) > g or D502 ¢ 0 (see Equation 38).
However, if D is derived from all of the training data, and thus
optimized for these data, the error estimates may be very biased
downward. This is particularly true when the dimensionality of x is
high compared to the sample sizes.

A powerful method that removes much of this training set bias
is the “leave-one-out," or "“jackknife," method. Mosteller and Tukey
(1977) provide a good discussion of jackknifing with illustrative
examples. A simple application of jackknifing computes a and b N
times (N = N1 + NZ) leaving each training event out in turn.
The discriminant function obtained each time 1is applied to the
left-out event to obtain a sample, D:(k)' The star
distinguishes this from the sample Di(k) obtained with the
comp]ete discriminant function. The idea behind jackknifing is that
the Di(k) are a more likely set of samples of f(DlC ) than
are the Di(k) The number of Di(k) having the wrong sign
thus produce less biased estimates of Py and Prre We
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denote the jifkknifed *_estimates as p; and p;l. The
variances of P1 and Pjp are a function of the training
sample sizes, being roughly inversely proportional to N1 and
NZ’ More accurate error estimates might be obtained with more
elaborate jackknifing procedures that yield more than N samples of
0* (e.g., leave-two-out).

The jackknifed samples D:(k) can be used to estimate the
complete probability distributions f(DlCl) and f(DICz). An
estimate of f(Dle) may be obtained by f*itting a smooth curve to
the cumulative histograms of the Di(k)’ or by Parzen''s
approximation. From estimates of the distributions, one can derive
estimates of the Bayes posterior probabilities using D in place of x
in Equation (1).

A drawback of the jackknife method is the considerable amount
of computation it involves. Fortunately, the computations required
by the Fisher discriminant are rather modest compared to many
alternate approaches; so compuational considerations might not
matter if the sample sizes and dimensionality are not too large. In
addition, we have devised efficient algorithms for finding inverses
of the perturbed covariance matrices that occur in the leave-one-out
method. These algorithms would reduce the jackknifing computation
by a factor of order N. .he algorithms do not seem to be applicable
to the damping scheme involving the correlation matrix (Equation
22). They are, however, applicable to the covariance damping scheme
(Equation 18).

3.5 NONLINEAR DISCRIMINANTS

If we discover that the damped Fisher discriminant performs
unsatisfactorily for automatic seismic discrimination, a particular
nonlinear discriminant can be 1implemented with only modest
modification of the algorithm outlined above. The decision function
is quadratic in x:
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T -1
D(x) = (x = myy)" (Sgqy + 0 I)°° (x = myy)

- (x =) (S(p) * 0, DTN (x - mpp) (23)
+ log [det (5(1) + o) I)/det (3(2) +te, 1] .

k y

v This is the Bayes decision function (Equation 6) implied by Gaussian

‘ f(ﬁjcl) and f(5JC2). but with sample means and damped sample
- covariances substituted for the true means and covariances of the
" ? distributions. Even though we did not optimize any free
coefficients (1ike a) to derive the quadratic discriminant, it turns
out that the Fisher discriminant is a special case of Equation
(23). When S(l) = 5(2), o) = oy, D(x) reduces to the Fisher
’ discriminant, but with a different value of b from that in Equation
. (15). In this sense, D(x) in Equation (23) might be considered more
optimal than the Fisher discriminant. However, this is not
necessarily the case since only finite training sets are available

for estimating the covariance matrices.

The algorithm for implementing this discriminant would not
differ very much from the Fisher discriminant aigorithm. The same
sample means and covariance matrices are involved, and are just
combined differently to obtain D(x). The jackknifing procedure
would proceed in the same way, including the shortcut algorithm we
mentioned for inverting perturbed covariance matrices, if it is

. needed. The damping parameters J and 9, in Equation (23)
stabilize D(x) 1in the same way that e stabilizes the Fisher
discriminant. Like o, they can be optimized by trial and error or
selected on theoretical grounds.

Finally, we mention a variation on the linear discrimination
approach which can be used to optimize, in a limited way, general
nonlinear discriminants. The procedure, described by Young and
Calvert (1974), is to augment the feature vector X with nonlinear
functions of 1{ts original elements. An example {illustrates the
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basic idea. Let x' be an augmented feature vector containing
squares and cross products of the elements of x:

- 2 ' 2
X (xl, Xos =os Xys X1s XXop ooy xM) . (24)
Then the linear discriminant

D(x') = gT_Jg' +b (25)

becomes a general quadratic function of the original x. The Fisher
linear discriminant algorithm applied to x' would, in effect,
optimize a quadratic decision function. The danger in this
approach, of course, is that augmentation increases the dimension of
the feature vector which might cause stability problems.

Given limited training sets, it may be more beneficial to
treat nonlinear functions of the data in the feature selection
phase. If a nonlinear function of a datum makes its distributions
more Gaussian-like (e.g., the z-statistic), its use as a feature in
X will improve the performance of both the Fisher discriminant and
the quadratic discriminant function in Equation (23).

3.6 REGIONALIZATION OF DISCRIMINANTS

Statistical discrimination methods assume that the training
data within each event class are identically distributed as
f(xIC) (k=1 or 2), and that a new feature vector x to be
classified has one of these two distributions. The error
probabilities P and P11 reflect an average performance on
events whose data have these distributions. These assumptions bear
on two important aspects of the seismic discrimination problem.

First, if events from different source regions are analyzed
together, then the method must treat the regional variations in the
discriminants due to geology as a random process that disperses
f(yck). This always degrades average error rates and may, in
fact, be a bad model. Thus, it is clearly necessary to divide the
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* . total data set into subsets appropriate to particular source
E regions. In this case, each subset is treated independently using
} the machinery discussed in the previous sections. Our approach is,
therefore, to set up a regionalized classification for events based
on geophysical province and to use real or theoretically produced
event training sets from such regions as independent populations. ,
For example, we would classify all trench located earthquakes as a
separate population of events. Similarly, we would treat events
occurring within plate interiors as a separate population, and
events from rift zones or ridges as a third population, and so on.
o A With this regional subsetting procedure, we would anticipate far
' less dispersion in the individual populations than would be the case
. if all events were classed together in one population, and,
consequently, much more meaningful estimates of error probabilities
t and more precise and accurate event classifications.

Ll
-p

3.7  MEASUREMENT ERROR

The second feature of the actual data that affects our use of
the previously discussed multivariate analysis is the errors and '
uncertainties in the observations. These errors are dependent on
the receiver network distribution relative to the source location,
the noise levels at the receivers and the event magnitude itself.
Estimates of these errors and uncertainties can be made; and we
have, for example, taken great care 1in obtaining noise related
uncertainty estimates in our automated measurement of discrimination
variables. The errors are not uniform in size with respect to event
magnitude and location, however, and this fact requires that we
either separate the populations into magnitude ranges and regions
where the data measurement uncertainties are nearly uniform, or
include the nonuniform data uncertainties in the multivariate
discrimination procedures from the beginning. In the former case,
the method outlined in the previous sections can be applied
directly. For the latter treatment, where nonuniform error
estimates are to be treated directly, the procedure formulated
earlier would need to be generalized.
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4. APPLICATION OF THE FISHER DISCRIMINANT TO SPECTRAL RATIO -
(VFM) MEASUREMENTS

In Chapter 3, a prescription for classifying single seismogram
feature vectors was developed. The prescription was very simple,
consisting of simply forming the dot product of the feature vector
with a set of weights and then adding a constant, b, to yield the
scalar discriminant which we call d. The weight vector, a, and the
constant, b, are obtained from analysis of training data which, of
course, must contain samples from the two populations. Except for a
scale factor, the weight vector, a, is just that first derived by
Fisher and 1is found by multiplying the inverse of the pooled
variance-covariance matrix by the vector difference in the means of
the two populations (see Equation 14). For the constant, b, we have
followed the suggestion of Young and Calvert (see Equation 15)
which, it may be shown, reduces to the classical Fisher result in
the case where the covariance matrices of the earthquake population
and explosion population are equal. In this chapter, we discuss the
results obtained when this rule is applied to the variable frequency
magnitude features calculated for some of the Area of Interest seis-
mograms. Only three stations (KAAO, RKON, and ILPA) are mentioned,
the purpose being to describe the method by actual illustration, in
order to exemplify the procedures whereby a large set of feature
weights have been obtained for incorporation into the automatic
discrimination package.

It may be recalled that we pointed out several theoretical
weaknesses to the application of the Fisher linear discriminant for
earthquake explosion discrimination. One possible weakness is that
the Fisher linear discriminant does not necessary minimize the PI
and PII misclassification probabilities. Although this discrimi-
nant does minimize those probabilities in the case where the two
populations have multivariate Gaussian probability density functions
! with equal covariance matrices, this is almost surely not the case
’ for earthquake and explosion seismograms. Secondly, the constant,
b, which essentially defines the decision rule is open to question,
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g for thera2 seems to be little theoretical guidance on how the

decision rule should be obtained for data such as we deal with.
’ Finally, there is the problem of attaching confidence limits to
parameters estimated from the training data. There exist, of
course, multidimensional equivalents of the t statistic of the x2
statistic, etc., but, in view of the demonstrable difficulties in
supporting the Gaussian assumption about our data, we are wary of
applying the ordinary tests of significance to the quantities which
we estimate from the training data. Not only are the sample sizes
Z pitifully small, but also the training data are known to have
{t inherent biases 1in such respects as propagation path, magnitude
! range, etc. Thus, any tests of significance based on the Gaussian
3—* assumption would be highly suspect.

by i IR
Pl v
L J

. To examine these sorts of questions, which are really

s questions about the robustness of the statistical methods which have

. been used, the analysis technique known as jackknifing (or the

i leave-one~out method) has been applied in conjunction with the work
on the Fisher linear discriminant. The idea behind jackknifing is
trivially simple. Given training data from each of the two popula-
tions, one simply pretends that one of the datums (feature vectors)
was not available for the analysis. Under the fiction that the
diminished training data 1is the only data available, the
discrimination function, a, (weights vector) and decision constant,
b, are evaluated using the methods described in Chapter 3. This
rule is then applied to the single datum which was left out of the

’ analysis. This results, for the ignored feature vector, a classifi-
cation scalar, d*. This single scalar is saved and tagged with the
identifier of the datum which was left out. The previously ignored
datum is then put back into the training set, another datum f{s
dropped from consideration, and the analysis repeated until one has
cycled through the whole set of training data. If there are n data
vectors available, this then requires n evaluations of the Fisher
linear discriminant.

o4 |
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A jackknife analysis has several attractive features.
Probably the principal one is that it leads to misclassification
probabilities which more clearly reflect the operational environment
in which seismic discrimination must be carried out. It mimics the
situation where the one freezes the training data, derives and
algorithm, and then applies the algorithm to new measurements. We
find, in fact, that misclassification probabilities obtained through
the jackknifing method are more pessimistic, (that is, discrimina-
tion more error-prone) than are those which one would infer if all
the training data were processed at once. A further desirable
feature is that plots of the scalar discriminant d* obtained by the
Jackknifing graphically illustrate the tradeoff which is obtained
when the decision rule, that is, the constant, b, is altered.
Jackknifing is also a clear way of demonstrating the existence of
outliers in the data, anomalous seismograms which may unduly bias
the results. This is a phenomenon sometimes referred to in
univariate statistics as a Jleverage point. In this respect,
Jackknifing fits neatly into the philosophical approach of
Gnanadesikan (1977, p. 196), "The main function of statistical data
analysis is to extricate and explicate the informational content of
a body of data."

A major objection to jackknifing in the past seems to have
been the computational expense entailed by the multiplicity of
statistical calculations. This has been greatly exaggerated. For
example, 60 feature vectors, each of dimension 40, can be processed
in a minute or so on the UNIVAC 1100/81 computer, and the buik of
the Al VFM data set was processed in this project in a few man weeks
-- and most of this time was taken up with data base preparation and
not the statistical calculations themselves. Compared to the effort
required first to organize the waveform data base and to edit it in
preparation for feature extraction, the linear discriminant analysis
and the jackknife calculation is short and simple. It presents the
analyst with a wealth of information from the training data -- more
data than can easily be absorbed and synthesized. )
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4.1 DESCRIPTION OF PROGRAM MVSD ;

A block diagram of the program which was used to estimate the
station dependent feature weights, and to estimate the misclassifi-
cation probabilities by jackknifing is shown in Figure 22. Because
the Area of Interest variable frequency magnitude data were most
accessible to us, these were the data used in the analyses. The
method, of course, is applicable to a feature vector of arbitrary
dimension, and further work in automatic discrimination will entail
the expansion of this calculation to include other discriminants.

The first stage in the analysis is a data preparation step
(see Figure 23). This is the only step which needs to be altered in
order to include other discriminant data sets. The procedure begins
by reading a set of execution parameters. This step continues in
the second box by reading the set of feature vectors which are
available for a single seismic station. This, of course, must
include a selection of earthquake, as well as explosion, seismogram
readings. In our application, we have worked with the 40 variable
frequency magnitudes described by Savino, et al. (198la) as
contained on the widely distributed data tape. Generally, only a
subset of all the available data is processed at a time. The data
is typically partitioned, for example, into different magnitude
ranges, or into different source regions, or into different distance
ranges. The sorted list of feature vectors is then rearranged. Ffor
the case of the VFM discriminant where no magnitude was occasionally
reported for some frequencies at which there were holes in the
spectrum, any missing data were linearly interpolated.

1 After the raw data is acquired, the statistical analysis of
the entire training set is performed. This breaks down into two {
major functions — the mean and covariance matrix calculations (see
Figure 24) and the linear discriminant estimation (see Figure 25).
The statistical procedure begins by computing new reference values
based on selected events and then subtracts out from the VFM

) magnitudes for each event, thg mean body wave magnitude. Thus, if

‘ one was to average the spectral magnitudes for each separate event,
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Figure 22,

PROGRAM MVSD

DATA PREPARATION
1

&

STATISTICS FOR ALL DATA
2

EIGENVECTOR(S)
EIGENVALUE(S)
3

JACKKNIFE

4

b

PRESENT RESULTS
s
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There are five steps to the procedure which estimates feature
weights and misclassification probabilities.
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Figure 23.

C o)

READ NAMELIST

READ MARS DATA FROM FILE

CALL READF

1

DETAILED SUMMARY
OF ALL EVENTS
CALL DBSUMM

SORT AND PACX EVENTS

CALL DSCRN

FIX MISSING DATA

CALL FIXMD

-

Data preparation is step one in program MVSD.
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Figure 24.

COMPUTE NEW REFERENCE VALUES

CALL NEWREF

A

SUBTRACT REFERENCE M8
FROM EACH DATA VALUE
CALL REFSuUB

)

!

COMPUTE COVARIANCE MATRIX

AND MEANS VECTOR
CALL MNSD

|

ADD UP TOTAL MEANS
AND VARIANCES
CALL COMBO

|
'
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Statistical caiculation on all training data for both event
classes is step two.
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Figure 25.

!

FIND EIGENVECTORS
AND EIGENVALUES
CALL EIGEN

i 0 .

i

COMPUTE NUMBER

OF DEGREES OF FREEDOM
CALL COMPOF

v

TEST EIGENVECTORS

i

AND EIGENVALUES
CALL ETEST

Y

FIND DISCRIMINANT COEFFECIENTS

CALL FINDAB

Eigenvector decomposition of the two covariance matrices is
used to stabilize the feature weights.
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the average of the modified magnitudes would be zero. Taking all
feature vectors together, the mean vectors and the covariance

’ matrices are found in the usual way (see Equation 10). From these,
the total mean and variances are found, and, finally, the combined
correlation matrix and the standard deviation.

N Having found mean vectors and covariance matrices for the set
,i ! of training data in each population, the weight vector, a, which
: best separates the two populations, and the constant, b, which forms
the decision rule, are then calculated (Figure 25). To do this, we
first compute the eigenvalues and the eigenvectors of the combined
covariance matrix using singluar value decomposition. The number of
degrees of freedom of the linear system {s then found, and the
matrix of the eigenvectors is tested for orthonormality. Further
tests are applied to the norm and to the trace of the matrix, for
these tests are required to ensure the matrix is not singular.
o Then, the discrimination coefficents (feature weights) are found,
and at this stage the parameter e (the damping parameter) is added
: in order to suppress the small eigenvalues of the variance covar-
. jance matrix. From the weights vector and the decision constant, b,
the mean and the standard deviation of the scalar discriminant, d,
for the entire data set are found.

The program next enters the inner jackknifing 1loop (see

Figure 26) which is essentially a repeat of step 2, the statistical

calculation, and step 3, the singular value decomposition and

% discriminant calculation, but for the diminished set of training
’ data which results when each measurement vector in turn is left out

of the analysis. Finally, the results are summarized, stored on a

printed file, and partially printed on the line printer (Figure 27).

4.2 KAAQ RESULTS

| The purpose of this, and the two succeeding sections is to
F | j1lustrate the practical application of the Fisher discriminant and
| jackknifing to the variable frequency magnitude data from the Area
of Interest experiment. Although practically the entire VFM data
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UPDATE MEAN VECTOR

AND COVARIANCE MATRIX
CaLL OMIT

!

- ADO UP TOTAL MEANS
AND VARIANCES
4 CALL COMEO

]
Y

e, ~ COMPUTE EIGENVECTORS
S AND BIGENVALUES

CALL BIGEN

1

COMPUTE NUMBER
- OF DEGREES OF FREEDQM
*
. CALL COMPOF

FINO DISCAIMINANT COEFFICIENTS

CALL FINDASB

Q0 STATISTICS ON JACXKNIFING

CALL JXSTAT

V

RECREATE ORIGINAL ARRAYS
GNVERSE OF OMIT)

CALL ASTORE

! ! . 3
‘ cLose LooP ’ ]

Figure 26. Jackknifing (the leave-one-out method) is used to estimate mis-
classification probabilities for the training data.
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.
& SORT VECTORS D° AND D-ALL
k.

(PRINT ACCORDING TO D*)
CALL SORTD

‘. Y ' *

= )

4 Figure 27. Jackknife results are printed and weights vectors saved to use
in the Automatic Discrimination Program at SDAC.
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set has been analyzed, we have extracted from those results what
seem to be three representative examples -- results obtained for
Kabul (KAAO), Redlake, Ontario (RKON), and the Iranian array
(ILPA). Not only are the linear discriminant results and the
jackknife results presented, but we aiso tie these results to those
obtained by application of the bivariate discrimination procedure
used previously by Savino. The comparison with Savino's eariier
results shows that the importance of the programming error
discovered by Rivers (1981) has been somewhat overestimated. Rivers
found that, for small magnitude events, there were demonstrable
mistakes in the extrapolation of the spectral magnitude to Tow
frequencies. What we find in the analysis reported here, is that
when no smoothing and extrapolation is done, that is, when all VFM
magnitudes are taken exactly as measured, there is the same clear
separation of the explosion and earthquake populations. This
re-analysis of the VFM data set does not, of course, address the
controversial issue of the physical basis for this discriminant.
That is, whether it reflects a bias in the data set, whether it is a
consequence of attenuation along the various propagation paths, or
whether it truly arises right at the source.

The result of pilot calculations for the KAAQ VFM data were
presented in Chapter 3 (see Figure 20). The principal purpose
behind those calculations was to explore the range of damping
parameter, e, which provides acceptable tradeoff between resolution
and variance. It is a general observation that covariance matrices
calculated for highly correlated random variables have a rank much
less than the dimension (in this case, 40) of the matrix so that
when its inverse is found, in order to estimate the set of weights,
a (see Equation 14), the 40 separate weight factors may be highly
erratic. The principal components analysis of the Kabul variance-
covariance matrix, performed by singular value decomposition, shows
that between 10 percent and 50 percent of the eigenvectors contained
most of the variance in the data. On the basis of this observation,
the entire VFM data set was processed using three values for the
damping parameter. These are referenced in the subsequent figures
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. by the parameter K which takes the values 1, 10, or 30 in the three
? cases. Since the damping parameter is a rather abstract notion, we
d also tabulate, in each of the figures, the numbers of degrees of
' freedom (NOF) which apply in the three cases. These are roughly
equivalent to the number of free parameters out of the 40 possible
which were retained in the inversion cf the variance covariance
matrix. The value of NDF, when rounded to the nearest integer, is
roughly equivalent to the dimension of the hyperplane which cleaves
the data into the two populations. For bivariate discrimination, :
NDF would equal 2. ;

Figure 28 presents the results obtained from the Tlinear
discriminant analysis of 29 events (see Table 1) in the Kabul VFM
data set. There are 10 explosions (Type -1) and 19 earthquakes
(Type 1). As was mentioned in the discussion of Figure 24, the
first step in the analysis is to subtract the mean magnitude from :
each 40 element VFM data vector. This gives 29 relative VFM
vectors. Then, at each of the 40 frequencies, the sample mean and
the sample standard deviation is calculated for each of the
populations. This results in an "average" earthquake spectrum and
an "average" explosion spectrum, with accompanying relative My
Timits for the two classes which encompass 95 percent of the
observetions. Plots of the upper and lower limits, drawn around the

average, are shown at the bottom of Figure 28. This figure
indicates that the explosion data are relatively richer in high
frequencies than are the earthquake data. We recall that if each of
these bands is averaged across frequency, each would have a relative %
my, of zero.

This initial step of subtracting the mean magnitude from each
spectrum is controversial. The result may be expected to depend on
the range of frequencies spanned. It takes no account of the
frequency dependent signal-to-noise ratio, a particuiarly severe
problem for weak events. Most importantly, it does not account for
the fact that the shape of both earthquake and explosion spectrums
vary witn the moment (or size) of the event. Graphically, one can
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KAROOZ OISCRIMINANT WEIGHTS .
0RATE=05/05/81 TIME=11:55:]4 i

) K= 30 NOF=- 4.3
k" Q
kA r i
Y, :
K= 10 NOF= 7.8
'
:
5 . K= | NOF=- 18.2
;' Q
CLASS MESNS +-31C
LIGNT-CX, MIX-X
] 21
g ' “
g
1 : a- ’-\',—\'
< i
-
. Cad
& -y
|
-2 . ; - | ,
0 i 2 3 4 H] ‘
FREQUENCY
' I}
!
]
Figure 28. A plot of the feature weights vectors for the VFM discriminant |

at KAAO (three top panels) shows that as the number of degrees
of freedom (NDF) increases, the weights become more "noisy".

4 The trend in the weights clearly reflects the differences in i
the mean spectra for the two classes of events (bottom). 1
. i
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5 understand the mean magnitude scaling by imagining a bivariate plot
of spectral amplitudes, such as Figure 36 shown later. Removing the
t mean from each spectrum is tantamount to assuming that the data are
clustered in ellipsoids with the major axis of each population

meeting the coordinate axes at a 45 degree angle.

? For three values of the damping parameter K, the linear
‘ discriminant analysis produces the three weights vectors shown in
f the top three panels of Figure 28, At the top of this figure, we
: see that with the damping parameter of 30, there are approximately
4.3 degrees of freedom for this data set whereas, when the damping
parameter is 1, there are over 16 equivalent degrees of freedom. It .
is observed, as was pointed out in the discussion of the pilot
calculation in Chapter 3, that when the number of degrees of freedom
increases, the progression of weights becomes more and more erratic ]
- with frequency. Although the pattern of weight amplitudes for the K
e = 1 result is difficult to perceive, for K = 10 and K = 30, it is
obvious that the set of weights tends to be positive at low
frequencies and negative at high frequencies. This is, of course,
Jjust the observation upon whicn Savino founded his bivariate
discrimination criterion,

For eacn of tne three choices of damping parameter, the

jackknife calculation was performed for all 29 events in the data

set. The result of this calculation is presented in Figure 29.

Recall that jackknifing consists of deleting, one at a time, each of

tne events from the data set and recalculating the best 1linear

discriminant; that is, the set of weight vectors which best separ-

ates the residual members in the two populations, Thus, for each

choice of the damping parameter, there were 29 sets of weight

vectors calculated, but we have not displayed those here. What we

show instead is the result of taking those 29 weight vectors and

| then using them to classify the single datum which was left out of
i the linear discriminant analysis. The results are presented as
| univariate plots of the scalar discriminant d* for all 29 events.
In Figure 29 we represent the explosion events by open circles and
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the earthquake events by crosses. In order to display graphically :
the clustering of the population values of d* and their spread, we
have superimposed on the univariate plots simple Gaussian functions
(the solid line denotes the explosion function, and the dash line
the earthquake function) calculated from the usual formula by
S inserting the mean and standard deviation of the two sets of d*
X;- values. There 1is, of course, no reason to presuppose that the
jackknifed values of d* do represent samples from the Gaussian
- population. If they did, however, and if the earthquake and
‘ explosion data sets had equal variances, then the two Gaussian plots
- would appear to be centered at -0.5 and +0.5 for the earthquakes and
54~ explosions respectively, and have equal amplitudes. In this case,
g for example, we note that for all three values of the damping
E parameter, the earthquake Gaussian is of somewhat lower amplitude
than the explosion Gaussian which is a reflection of the greater
spread in the values of d* obtained by jackknifing the earthquake
data.

TS

Not only does the jackknife calculation for each value of the i
damping parameter yield 29 slightly different weight vectors, it
also yields 29 different values for the decision constant, b. The
heuristic basis for our definition of this constant was mentioned
‘ earlier. It is likely that a different definition of b would lead
i to somewhat different results for the vaiues of d* shown in the
tnree panels of this figure. Just as the choice of b amounts to
! expressing a rule for classification of the linear discriminant, so,
in Figure 29, one may select a critical value of d*, say d:, to
perform classification. Adopting the rule that an event is
classified as an explosion if d* is negative, and classified as an ﬁ
earthquake if d* is positive, i.e., d: = 0, then the misclass-
ified events are obtained as shown in the top part of each panel. 1
Note that the set of misclassified events depends upon the choice of
the damping parameter. When the damping parameter is large, only a
few principal components are retained in the covariance matrix.
This leads to a rather smooth set of weights and results in only two
misclassifed events for this data set. For smaller values of the
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damping parameter, there are a larger number of degrees of freedom,
and more events are misclassified. Note, for example, that event 53
is correctly classifed for K = 30 and incorrectly classified for the
other two cases, whereas event 272 is correctly classified for 16
degrees of freedom, but misclassified for 7.6 and 4.3.

The direct correlation between degrees of freedom and
misclassified events obtained in the jackknife test, 1is Jjust
contrary to the result one obtains when all the data are lumped
together. Since higher degrees of freedom amounts to a higher
dimension in the discrimination hyperplane, the number of misclassi-
fied events decreases as the degrees of freedom increases.

Although we do not wish to attach too much importance to the
fit of Gaussian dispersion functions about the two sets of d*
values, we note that the value of d* at which the solid curve and
dotted curve cross depends upon the value of the damping parameter.
For the damping parameter of 30, the intersection point occurs
nearly at d* = 0; whereas for K = 1 it is approximately d* = 0.2.
This illustrates the phenomenon discussed in the theoretical
discussion that there is there is no a priori reason why the Fisher
linear discriminant yields equal misclassification probablilities
for the two populations.

The principal purpose hehind the jackknife study is to provide
more realistic estimates of misclassification probabilities than are
obtained when the data are treated in toto, and to provide a means
for quickly identifying anomalous seismograms. We find, for
example, that in this study, events 22, 53, 266, and 272 give
ambiguous results, for both d and d* are close to zero. Small
changes in the definition of the constant, b, or alternatively of
the decision value d: could flop these events into one group or
another. Different choices of the damping parameter have the same
effect.

Linear discriminate analysis with jackknifing completely
supports the conclusion of Savino, et al. (1980a) that the VFM
method (spectral ratios) is an effective way of separating the
explosion seismograms from the earthquake seismograms in the Kabul
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data set. This is illustrated in Figure 30 (reproduced from Savino,
et al.) which shows the results of the bivariate discriminant
analyses of the Kabul data. It can be seen that earthquake 272, and
explosions 22 and 53, all indicated by circles, fall on the inner
boundaries of their respective bivariate populations, and that
explosion 266, which jackknifing missed only for the large degree of
freedom case, is also more earthquake like than the seven other
correctly classified explosions. Note also on this figure that
earthquake 159 lies very near the misclassified earthquake event
272. Table 1 shows that this earthquake, although correctly
classified, would have a rather large uncertainty attached to its
classification,

The difference between the methodology of Savino and that used
here should be mentioned again. The basic data for the two
calculations was identical, and that consisted of the spectral
magnitude at 40 different frequencies spanning the range 0.5 Hz to
5.0 Hz for 29 events. Qur analysis has taken all 4Q spectral
estimates for tne set of events and found the linear weighting of
the relative spectral magnitudes which forms the best separation
into two groups. There was an arbitrary parameter in this calcu-
lation, the damping parameter, which significantly altered the
details of the weight vector, but only slightly altered the final
event classifications. This was most clearly shown in the jackknife
experiment. Savino, on the other hand, selected just two freguency
bands within the range 0.5 Hz to 5.0 Hz. Across each of the fre-
quency bands, a high order polynomial was fitted to the various
spectral amplitudes. This interpolating polynomial was then
evaluated at a specific frequency to yield the VFM magnitude
presented in the bivariate plots.

It does not take much artistic skill to be able to draw a
straight line on Figure 30 which totally separates the earthquake
population from the explosion population. How is it, then, thai the
linear discrimination analysis makes mistakes, thus appearing to
perform less satisfactorily. The answer is, in fact, that it does
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not. This may be seen by the data presented in by Table 1. Column
two in this table gives event numbers. For each event, column
seven, labeled d(all), gives the value of the scalar discriminant
obtained when all the data is processed at once using a damping
parameter of 10. Next to the d(all) column is the column labeled
¥ "original errors" which tells those events which are misclassified
. under this criterion. It can be seen that this column is empty. On
B the other hand, when the data are jackknifed, a slightly different
i set of scalar discriminant values, our d*, is obtained as shown in
;; column dstar. Now we discover that there have been three
: misclassified events on the jackknife calculation.

For classifying future events, one wants to take the largest
possible training set, and it is the set of weights shown on the K =
- 10 panel of Figure 28 which are included in the automatic discrimin-
b ation program. When these weights are applied to the 29 events in
e the test set, we obtain the values of d(all) shown in Table 1.
These values of d(all) roughly correspond .- the perpendicular
distance between the event data vector and the separation plane.
When reduced to two dimensions, d(all) correlates with distances
measured on the bivariate plot shown in Figure 30. For example, the
most negative value of d(all) was obtained for event 14, and the }
most positive value was obtained for earthquake 162. If we look at f
the position of these two events on Figure 30, we see that event 162 :
is well on the outer boundary of the earthquake population. (Event §
14, on the other hand, is more toward the central zone of the i

L
b

R T, D AP CIp

explosion population.)

4.3 RKON RESULTS

The RKON data set consists of the 54 events listed in

Table 2. The relative my plots shown at the bottom of Figure 31

: indicate again that the explosions are relatively richer in high
' frequencies than are the earthquakes. The three weight vectors
i obtained for the three choices of the damping parameter show the
same tendency to become erratic as the damping is decreased and the
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Figure 31.

- -

3
FREQUENCY

The plot of the feature weights vectors for the VFM discriminant
at RKON (three top panels) shows most clearly the separation

in the relative magnitudes for the two classes for a small number
of degrees of freedom.
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degrees of freedom increases, and, for the K = 1 case, the low
frequency to high frequency slope is almost completely lost. For K
= 10 and K = 30, we note that, although for frequencies above 1.0 Hz
the weights tend to be negative almost everywhere, there is a
pronounced scalloping in the set of weights. The bivariate discrim-
ination used by Savino selected the two frequencies 0.6 Hz and
3.25 Hz, It is amusing to note that there is a pronounced dip in
the weight vector around 2.9 Hz, and one speculates that a slight
decrease in the upper frequency could possibly have produced an even
more disjoint separation of the events in the data set. Again, the
set of weights which have been incorporated into the adtomatic
discrimination routine are those obtained for the damping parameter
of K = 10.

The jackknife calculation of the RKON data for the three
values of the damping parameter (Figure 32) shows that the explo-
sions have a wider spread than the earthquakes. Whereas Kabul
produced a somewhat tighter clustering of the values of d* for the
explosion population, here we find exactly the opposite -- that the
tightest grouping of events occurs for the d*'s obtained for the
earthquake population. However, if one looks in detail at the
values of the discriminate function d*, we see that the wide spread
in tne explosion population is determined principally by two events,
event 33 and event 79. Event 79 is so clearly anomalous that it
would certainly be better to recalculate this example leaving event
79 out of the data set. That would have the effect of producing an
explosion Gaussian which was much less broad.

The tendency of d* for some events to be affected by the
choice of damping parameter (previously noted in the discussion of
tne Kabul data) is particularly pronounced for event 33 at RKON. We
see that when the damping parameter is small (the number of degrees
of freedom is large), event 33 is clearly misclassified. However,
as the damping is increased, the set of weight becomes smoother, and
event 33 moves appreciably to the left. For the largest damping
(that is, tne fewest degrees of freedom), event 33 is indistinguish-
able from its neighbors in the explosion population. The right most
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panel in Figure 32 shows particularly clearly the fact that the }
Gaussian width of the explosion population is entirely controlled by
v the single anomalous event, explosion number 79.

As before, there is a clear relationship between the results
obtained in this analysis based upon the 1linear discriminant
function and the jackknife calculation and the bivariate
discrimination of Savino, et al. (198la). This is shown in
Figure 33. Three events, explosion 79 and earthquakes 28 and 34,
are misclassified by both criteria. Explosion 33, which was missed
only when the damping parameter was set anomalously 1low, and
earthquakes 77 and 143, are positioned in the ambiguous central
portion of the bivariate plot. We note again, however, that there
are some events, in this case earthquake 7 and earthquake 24, which
are correctly c¢lassified by the linear discriminant analysis whereas
a neighbor, earthquake 143, is misclassified for all three values of

dumBoeaion

ki g R

E

e >
B ot s s e s

misclassified these three events also, as well as one additional
event, earthquake number 77. Jackknifing changes the picture only ]
slightly by indicating the marginal nature of event 143.

a damping parameter. i
: . If one were to draw a line on Figure 33 which best separated
» the two populations, the three events, 79, 28 and 34 would be L
-
: incorrectly classified. Table 2 (see column Original Errors)
: indicates that the linear discriminant analysis of all the data h
. 4

4.4 ILPA RESULTS

1 The VFM results for the Iranian long period array have been
: selected for the final presentation of linear discriminant analysis
: and jackknifing. Although there are 56 events in the data set (see
Table 3), only four of these are explosions. Figure 34, at the
3 bottom, shows again the band of magnitudes which encompasses 95
percent of the relative mb's for the explosion and earthquake
classes. The three panels at the top of this figure show the three
sets of weight vectors obtained from the linear discriminant
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Figure 34, The plot of the feature weights vector for the VFM discriminant
at ILPA clearly reflects the separation between the two popula-
. - tion mean magnitudes over the range from 0.5 to 2.0 Hz.
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analysis. We note here that, since the data set is larger, the
numbers of degrees of freedom for the three choices of damping
parameter is somewhat larger than it was in the past. The tendency
of tne weights to become more jagged as the damping decreases is
again apparent as is the positive to negative trend with increasing
frequency. Note that for all three values of the damping parameter,
the weight vector components are essentially zero for frequencies
above 2.5 Hz, and this clearly mimics the lack of separation between
the two relative m, classes shown in the bottom panel. Savino
selected for the bivariate discrimination, the frequencies 0.55 Hz
and 2.0 Hz. If one were to select a single pair of frequencies for
performing discrimination from the plots of the weight vectors shown
here, one might prefer the choice 0.75 and 1.75 Hz. Whether or not
this would yield an improvement in Savino's method is not known.

When the 1linear discriminant function is jackknifed for the
tnree choices of the damping parameter, the results presented in
Figure 35 are obtained. Explosion 21 is missed in all three cases,
and its d* value of 0.5 clearly places it in the midst of the
earthquake population. The paucity of explosion data causes the
best fitting Gaussian to change radically as the damping parameter
is changed. As with the RKON measurments, a single anomalous event,
event 21, has caused the explosion Gaussian to be significantly
broader than the earthquake Gaussian. With only four explosion
datums, and with one of them clearly being anomalous, it is obvious
that event 21 is having an undue influence on the choice of linear
discriminant weignts, and these data should probably be reanalyzed,
deleting event 21 from the analysis. Just as explosion 21 is
misclassified for all three choices of the damping parameter, so
earthquakes 147 and 168 are misclassified for all three choices.
Event 65 is a borderline case which is correctly classified when the
damping is strong, but misclassified when the damping is small. We
recall tnat when the damping is small, the number of degrees of
freedom is high, and one is fitting a higher dimensioned hyperplane
through the parameter space. It is to be expected that when the
damping is small, one will have a smaller number of misclassified
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events, but that 1is inevitably accompanied by an increased
uncertainty in the classifications of every event,

The comparison between the linear discriminant and jackknife
classification methods and the bivariate classification performed by
Savino, et al. 1is presented in Figure 36. Explosion 21 and
eartnquake 147 clearly fall into the wrong groupings from both
points of view. Events 65 and 166, which are misclassified in a
linear discriminant analysis, were not included in the bivariate
discrimination by Savino. The comparison between the value of the
linear discriminant d(all) obtained when the entire data set is
processed with a damping parameter of 10 and the set of values d*
obtained for the linear discriminant when the data is jackknifed is
shown in Table 3. As was noted in Figure 36, a linear discriminant
classification obtained by weighting all frequencies is no more
effective than a bivariate discriminant based on the frequencies of
0.55 Hz and 2.0 Hz in classifying the earthquake 147 and the
explosion 21. It can be seen in the right most column that event 65

and 166, which were not discussed by Savino, are clear borderline
cases which are correctly classified when the data is lumped
together, but which are misclassified when the jackknife is
performed.
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